These hooks allow you to consume real-time streams from your tasks. Streams are useful for displaying AI/LLM outputs as they’re generated, or any other real-time data from your tasks.
To learn how to emit streams from your tasks, see our backend streams documentation.

useRealtimeRunWithStreams

The useRealtimeRunWithStreams hook allows you to subscribe to a run by its ID and also receive any streams that are emitted by the task.
"use client"; // This is needed for Next.js App Router or other RSC frameworks

import { useRealtimeRunWithStreams } from "@trigger.dev/react-hooks";

export function MyComponent({
  runId,
  publicAccessToken,
}: {
  runId: string;
  publicAccessToken: string;
}) {
  const { run, streams, error } = useRealtimeRunWithStreams(runId, {
    accessToken: publicAccessToken,
  });

  if (error) return <div>Error: {error.message}</div>;

  return (
    <div>
      <div>Run: {run.id}</div>
      <div>
        {Object.keys(streams).map((stream) => (
          <div key={stream}>Stream: {stream}</div>
        ))}
      </div>
    </div>
  );
}
You can also provide the type of the streams to the useRealtimeRunWithStreams hook to get type-safety:
import { useRealtimeRunWithStreams } from "@trigger.dev/react-hooks";
import type { myTask } from "@/trigger/myTask";

type STREAMS = {
  openai: string; // this is the type of each "part" of the stream
};

export function MyComponent({
  runId,
  publicAccessToken,
}: {
  runId: string;
  publicAccessToken: string;
}) {
  const { run, streams, error } = useRealtimeRunWithStreams<typeof myTask, STREAMS>(runId, {
    accessToken: publicAccessToken,
  });

  if (error) return <div>Error: {error.message}</div>;

  const text = streams.openai?.map((part) => part).join("");

  return (
    <div>
      <div>Run: {run.id}</div>
      <div>{text}</div>
    </div>
  );
}
As you can see above, each stream is an array of the type you provided, keyed by the stream name. If instead of a pure text stream you have a stream of objects, you can provide the type of the object:
import type { TextStreamPart } from "ai";
import type { myTask } from "@/trigger/myTask";

type STREAMS = { openai: TextStreamPart<{}> };

export function MyComponent({
  runId,
  publicAccessToken,
}: {
  runId: string;
  publicAccessToken: string;
}) {
  const { run, streams, error } = useRealtimeRunWithStreams<typeof myTask, STREAMS>(runId, {
    accessToken: publicAccessToken,
  });

  if (error) return <div>Error: {error.message}</div>;

  const text = streams.openai
    ?.filter((stream) => stream.type === "text-delta")
    ?.map((part) => part.text)
    .join("");

  return (
    <div>
      <div>Run: {run.id}</div>
      <div>{text}</div>
    </div>
  );
}

Streaming AI responses

Here’s a more complete example showing how to display streaming OpenAI responses:
import { useRealtimeRunWithStreams } from "@trigger.dev/react-hooks";
import type { aiStreaming, STREAMS } from "./trigger/ai-streaming";

function MyComponent({ runId, publicAccessToken }: { runId: string; publicAccessToken: string }) {
  const { streams } = useRealtimeRunWithStreams<typeof aiStreaming, STREAMS>(runId, {
    accessToken: publicAccessToken,
  });

  if (!streams.openai) {
    return <div>Loading...</div>;
  }

  const text = streams.openai.join(""); // `streams.openai` is an array of strings

  return (
    <div>
      <h2>OpenAI response:</h2>
      <p>{text}</p>
    </div>
  );
}

AI SDK with tools

When using the AI SDK with tools, you can access tool calls and results:
import { useRealtimeRunWithStreams } from "@trigger.dev/react-hooks";
import type { aiStreamingWithTools, STREAMS } from "./trigger/ai-streaming";

function MyComponent({ runId, publicAccessToken }: { runId: string; publicAccessToken: string }) {
  const { streams } = useRealtimeRunWithStreams<typeof aiStreamingWithTools, STREAMS>(runId, {
    accessToken: publicAccessToken,
  });

  if (!streams.openai) {
    return <div>Loading...</div>;
  }

  // streams.openai is an array of TextStreamPart
  const toolCall = streams.openai.find(
    (stream) => stream.type === "tool-call" && stream.toolName === "getWeather"
  );
  const toolResult = streams.openai.find((stream) => stream.type === "tool-result");
  const textDeltas = streams.openai.filter((stream) => stream.type === "text-delta");

  const text = textDeltas.map((delta) => delta.textDelta).join("");
  const weatherLocation = toolCall ? toolCall.args.location : undefined;
  const weather = toolResult ? toolResult.result.temperature : undefined;

  return (
    <div>
      <h2>OpenAI response:</h2>
      <p>{text}</p>
      <h2>Weather:</h2>
      <p>
        {weatherLocation
          ? `The weather in ${weatherLocation} is ${weather} degrees.`
          : "No weather data"}
      </p>
    </div>
  );
}

Common options

experimental_throttleInMs

The *withStreams variants of the Realtime hooks accept an experimental_throttleInMs option to throttle the updates from the server. This can be useful if you are getting too many updates and want to reduce the number of updates.
import { useRealtimeRunWithStreams } from "@trigger.dev/react-hooks";

export function MyComponent({
  runId,
  publicAccessToken,
}: {
  runId: string;
  publicAccessToken: string;
}) {
  const { run, streams, error } = useRealtimeRunWithStreams(runId, {
    accessToken: publicAccessToken,
    experimental_throttleInMs: 1000, // Throttle updates to once per second
  });

  if (error) return <div>Error: {error.message}</div>;

  return (
    <div>
      <div>Run: {run.id}</div>
      {/* Display streams */}
    </div>
  );
}
All other options (accessToken, baseURL, enabled, id) work the same as the other realtime hooks.